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Abstract

We consider a queueing system with multiple Poisson arrival queues and a single batch server that has infinite

capacity and a fixed service time. The problem is to allocate the server at each moment to minimize the

long-run average waiting cost. We propose a Cost-Arrival Weighted (CAW) policy for this problem based on

the structure of the optimal policy of a corresponding fluid model. We show that this simple policy enjoys

a superior performance by numerical experiments.
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1. Introduction

In this paper, we consider a model of multiple parallel queues and a single batch server that has the

ability to serve all the customers in a certain queue within a fixed amount of time. The decision at each

time is to choose which queue to serve and the goal is to minimize the long-run average waiting cost.

The model can serve as an adequate description for a wide range of applications. For example, consider

a shuttle bus at an airport serving various nearby destinations (hotels, car rental locations, etc). It has

a relatively large capacity and can serve all the passengers aiming at a given location at once within a

certain amount of time. The decision it has to make is which destination to go to in each run in order to

minimize the total waiting time of passengers. Another example would be certain online computing service

applications, where in some cases, the actual computing time may be negligible compared to the fixed setup

time (software initialization, warm up, etc). Under this scenario, the platform must decide which type of

job it should process at each time with the objective of minimizing the total delays of jobs.

We first formulate the problem as a Markov Decision Process (MDP). However, the state space of the

MDP is very large, making it computationally intractable. To propose a computationally efficient policy, we

consider a simplified fluid model, which is a deterministic counterpart of the stochastic model. We show that

the action sequence is cyclic for any optimal stationary policy, and present a characterization for the optimal

policy. In particular, in the optimal policy, each time we calculate for each queue the product of the waiting

cost coefficient, the current queue length, and a “future” waiting time, and we serve the queue with the

maximum of the product. Based on the above characterization, we propose a heuristic policy by assuming
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that each queue is served at equally spanned intervals. By some calculation, we deduce that the optimal

interval is proportional to the square root of the ratio between the waiting cost coefficient and the arrival

rate of each queue. Then by using this interval as a substitute for the “future” waiting time, we propose a

policy called the Cost-Arrival Weighted policy, or the CAW policy, which can give service decisions in both

fluid and stochastic models. In particular, at each time period, the CAW policy calculates the following

value for each queue i:

Qi

√
ci
λi

where Qi is the current queue length, ci is the waiting cost coefficient and λi is the arrival rate. The CAW

policy chooses the queue with the largest value to serve. We then propose a generalization of the CAW

policy to the case when the server’s capacity is finite. Finally, we show by numerical experiments that the

CAW policy and its generalization perform well under both the fluid and the stochastic settings.

The remainder of this paper is organized as follows. In Section 2, we review the related literature. In

Section 3, we present our model, including both the stochastic and the fluid models, and present our main

analytical results. We also propose the CAW policy and its generalization in Section 3. In Section 4, we

conduct numerical experiments to validate the performance of the CAW policy. Section 5 concludes the

paper.

2. Literature Review

Our work is related to the literature of batch service queueing systems where the server can serve multiple

customers at the same time. We refer the interested readers to the monograph by Chaudhry and Templeton

[1] for a comprehensive review of this topic. For more recent advances, see Armero and Conesa [2], Chang

and Takine [3], Chen et al. [4] and the reference therein.

Another line of research focuses on the optimal control of multi-class queueing systems, where the classical

cµ-rule is proposed as the optimal policy under a variety of input assumptions, see Baras et al. [5], Buyukkoc

et al. [6] and Shanthikumar and Yao [7]. Briefly speaking, when the system consists of a single server and

multiple parallel queues, in order to minimize the expected total cost, the server should serve the non-idle

queue with the maximal product of the queue-dependent waiting cost coefficient c and the service rate µ.

While the cµ-rule is of both theoretical and practical significance, it cannot be applied to our model because

of the batch-service feature. In fact, we will demonstrate in Section 4 that a myopic policy based on the

cµ-rule performs relatively poorly in our model.

Liu and Wang [8] consider a similar model to ours with only two queues and analyze the optimal state-

independent policy. They prove that the optimal state-independent policy would be serving the slow-arriving

queue once followed by serving the fast-arriving queue multiple times (k). They also give an explicit formula

for the optimal k. While we adapt this model to the case of multiple queues, our focus is on deriving an

efficient state-dependent policy, which sets our two works apart.
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There have also been vast literature on modeling complex systems with batch queues. For example,

Ignall and Kolesar [9] and Weiss [10] consider an infinite capacity airport shuttle bus transporting passengers

between two terminals. Deb [11] focuses on the case when the capacity is finite. Khazaei et al. [12] [13] and

Santhi and Saravanan [14] use batch queues to model cloud computing centers and analyze their performance

under different setups. While the background may be similar, our work differs from those in terms of the

queue structure and the cost function.

3. Model and Analysis

We consider the scenario where there are N infinite capacity queues with a single batch server. In the base

case, we assume that the batch server has infinite capacity, which means that it can serve all the customers

in a single queue at once. We assume the service time of each queue is fixed and equals 1. The arriving

process for queue i is assumed to be a Poisson process with parameter λi. Let a(t) ∈ {1, 2, . . . , N} denote

the index of the queue served at time t. We let Qi(t) denote the length of the i-th queue at time t. Then

Qi(t) inherits the following dynamics:

Qi(t+ 1) = (1− 1{a(t)=i})Qi(t) + Zi, t = 0, 1, 2, . . .

where Zi is a random variable following Poisson distribution with parameter λi and 1 is the indicator

function. We use vector q(t) = (Q1(t), Q2(t), . . . , QN (t)) to denote the state of the system which records

the length of each queue. We consider all non-preemptive stationary policies π : ZN → {1, 2, . . . , N} that

map a current state to the index of the queue which the server will serve. We define the cost-to-go function

Jπ(q, T ) starting from state q following policy π for T time periods as

Jπ(q, T ) := Eπ
(

T∑
t=1

N∑
i=1

ciQi(t)
∣∣∣q(0) = q

)
,

where ci is the waiting cost coefficient for a single customer in queue i in each period. We are interested in

minimizing the long-run average cost, which is defined by:

min
π
Jπ(q) := lim sup

T→∞

1

T
Jπ(q, T ). (1)

Note that under our formulation, the states are communicative under every stationary policy. Hence the

optimal value for (1) would be the same for every initial state q by Bertsekas et al. [15]. And the average

cost optimality equation can be written as

γ∗ + h∗(q) = cTq + min
a∈{1,2,...,N}

E (h∗(q − qaea + Z)) . (2)

Here Z is a N -dimensional random vector with the i-th element following Poisson distribution with parameter

λi, ea is the unit vector with the a-th element equalling 1 and qa is the a-th element of vector q. By Bertsekas

et al. [15], equation (2) can be interpreted as follows. If there exists solution (γ∗, h∗) for equation (2), then
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γ∗ is the optimal value of the average cost problem (1) and h∗ is called the relative value function. Without

loss of generality, we can set h∗(0) = 0. Then h∗(q) would be the minimum difference between the expected

cost to reach 0 from q and the cost that would be incurred if the cost per stage is γ∗. Unfortunately, the

state space of the above problem is very large, which makes solving (2) precisely computationally difficult.

Hence, in the following, we focus on proposing an easy-to-compute heuristic policy.

The idea of our heuristic policy is based on a deterministic counterpart of the original model, in which the

arrival of customers is deterministic in each time period. We also call the model the fluid model. Specifically,

the fluid model has the following dynamics:

Qi(t+ 1) = (1− 1{a(t)=i})Qi(t) + λi. t = 0, 1, 2, . . .

By Sennott [16], there exists an optimal stationary policy for the average cost problem (1) under the fluid

model. In what follows, we wish to characterize the optimal stationary policy. To start with, we prove that

the action sequence generated by the optimal stationary policy is cyclic. Because under the fluid model, the

action sequence a(t) is uniquely determined by the policy π and the initial state q0, we refer to a(t) and π

interchangeably in the following analysis.

Proposition 1. For any initial state q(0), suppose π∗ is an optimal stationary policy for the fluid model.

Then the corresponding action sequence a∗(t) would be cyclic after a certain time threshold, i.e., there exists

T0 > 0 and t0 > 0 such that a∗(t+ t0) = a∗(t) for every t > T0.

Proof. We first prove that under policy π∗ there exists two time steps T0 < T1 such that the state q∗(T0) =

q∗(T1). We prove this by contradiction. Suppose for any T0 < T1, we have q∗(T0) 6= q∗(T1). Note that the

length of each queue i at time t has the following structure: Q∗i (t) = Q∗i (0) + kλi or Q∗i (t) = kλi for some

k ∈ N. Therefore, for any M > 0, there are at most ΠN
i=1(2dMλi

e+1) states q∗(t) satisfying maxi{Q∗i (t)} < M .

This implies that there exists a time threshold T ∗ > 0 such that maxi{Q∗i (t)} ≥ M for any t > T ∗. As a

result, the waiting cost induced at time t > T ∗ would be
∑N
i=1 ciQ

∗
i (t) ≥ Mcmin, where cmin = mini{ci}.

And the long-run average cost of π∗ is bounded below by

Jπ
∗
(q0) = lim sup

T→∞

1

T

T∑
t=1

N∑
i=1

ciQ
∗
i (t) ≥ lim sup

T→∞

T − T ∗

T
Mcmin = Mcmin. (3)

Note that inequality (3) holds for arbitrary M > 0, which indicates Jπ
∗
(q0) = ∞. We next show that we

are able to find a policy π′ (which may be non-stationary) that achieves finite average cost. In fact, by

taking action a′(i + kN) = i + 1 for 0 ≤ i ≤ N − 1 and k ∈ N, the length of the i-th queue is bounded by

Q′i(t) ≤ Q′i(0) +Nλi for every t > 0. As a result, the average cost of π′ has an upper bound:

Jπ
′
(q0) ≤

N∑
i=1

ci(Q
′
i(0) +Nλi).

This means Jπ
∗
(q0) > Jπ

′
(q0), which is a contradiction since π∗ is an optimal policy. As a result, there

exists T0 < T1 such that q∗(T0) = q∗(T1). Recall that the policy π∗ is stationary, which means it will take
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the same action facing the same state, so the action sequence a∗(t) would be cyclic after T0 and the cyclic

period t0 can be chosen as T1 − T0.

Proposition 1 shows that we only need to consider a cyclic policy for the long-run average problem. We

next give a necessary condition for the cyclic policy to be optimal. For any action sequence a(t), we define

the following quantity as the next time the server serves certain queue i:

wai (t) = min ({s : a(s) = i, s > t} ∪ {∞}) .

Then for a cyclic optimal policy a∗, it must satisfy the following property.

Proposition 2. Suppose an optimal action sequence a∗ is cyclic after time T , then for any t > T , we have

a∗(t) ∈ arg max
i

(
ciQi(t)(w

a∗

i (t)− t)
)
. (4)

Proof. We prove by contradiction. Suppose this is not true for certain t1 > T . We denote k = a∗(t1 + lt0)

as the action taken at time t1 + lt0 for all l ∈ N where t0 is the cyclic period of a∗. We choose queue j such

that j ∈ arg maxi
(
ciQi(t1)(wa

∗

i (t1)− t1)
)
. Then we form a new action sequence a′ defined as

a′(t) =

j, t = t1 + 2lt0, l ∈ N

a∗(t) otherwise.

This policy a′ is a cyclic policy starting from T with period 2t0. We now focus on the single cycle starting

from time t1 to time t1 + 2t0. Because we only change the action at time t1 during [t1, t1 + 2t0) and

[t1 + t0, t1 + 2t0) is still a full cycle as in the optimal policy a∗, both queue k and j must be served at least

once between t1 + t0 and t1 + 2t0. As the result, we have wa
∗

j (t1 + 2lt0) = wa
′

j (t1 + 2lt0), l = 1, 2, . . . and

wa
∗

k (t1 + 2lt0) = wa
′

k (t1 + 2lt0), l = 1, 2, . . . . This means that by cancelling the service at time t1 for queue

k, the Qk(t1) customers of queue k at time t1 would have to wait wa
∗

k (t1)− t1 more time periods, inducing

more cost of this single cycle by ckQk(t1)(wa
∗

k (t1)− t1). In the same way, by adding a service to queue j at

time t1, we could reduce the cost of this single cycle by cjQj(t1)(wa
∗

j (t1) − t1). Thus, we can calculate the

difference between the average cost of a∗ and a′ as:

Ja
∗
(q0)− Ja

′
(q0) =

cjQj(t1)(wa
∗

j (t1)− t1)− ckQk(t1)(wa
∗

k (t1)− t1)

2t0
> 0.

Therefore, we can conclude that the cost of a′ is less than the cost of a∗, which is a contradiction since a∗

is an optimal policy.

Proposition 2 provides a rule for choosing the optimal action at each time step t. The rule takes the

current queue length Qi(t) as well as the “future” waiting time wa
∗

i (t)− t into consideration. The intuition

behind this is that if we are going to serve some queue in the near future, because we can serve the customers

all at once, then we would incline to serve other queues at the current time.
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However, Proposition 2 does not directly give us a practical policy because it contains the future infor-

mation wa
∗

i (t). To overcome such difficulty, we propose an approximation method based on the above idea

by assuming that each queue i is served at an equally spanned time interval hi. Given a certain time step t,

we use this hi as a proxy for the “future” waiting time of queue i at time t, which is wa
∗

i (t)− t. Under such

assumption, a heuristic policy at time t can be written as (we break ties arbitrarily):

aH(t) = arg max
i

(ciQi(t)hi) .

Now we study how to choose hi. First, if queue i has a homogeneous serving interval hi, then its average

waiting cost can be calculated as

Ri(hi) =
ci(1 + 2 + · · ·+ hi)λi

hi
=

(1 + hi)ciλi
2

.

Moreover, since we only have a single server, the frequency of serving each queue needs to be added up

to 1, i.e.,
∑N
i=1 1/hi = 1. As a result, we obtain the following optimization problem (5) for solving the

optimal serving interval hi. Here we ignore whether it is feasible to find a sequence with the specified serving

frequency for each queue.

min
h1,...,hN

N∑
i=1

Ri(hi),

s.t.

N∑
i=1

1

hi
= 1,

hi ≥ 0, i = 1, 2, . . . , N.

(5)

To solve (5), we note that it is equivalent to solving min{
∑N
i=1 hiciλi|

∑N
i=1

1
hi

= 1;hi ≥ 0, i = 1, 2, . . . , N}.

By Cauchy-Schwartz inequality, we have

N∑
i=1

hiciλi =

(
N∑
i=1

1

hi

)(
N∑
i=1

hiciλi

)
≥

(
N∑
i=1

√
ciλi

)2

,

and the equality is achieved when hi ∝ 1√
ciλi

. Combining this with the constraint
∑N
i=1

1
hi

= 1, we have the

solution to (5) to be h∗i =
∑N

k=1

√
ckλk√

ciλi
.

Based on the above analysis, by taking hi = h∗i , the action at each time step would be aH(t) ∈

arg maxi{ciQi(t)
∑N

k=1

√
ckλk√

ciλi
} = arg maxi{Qi(t)

√
ci
λi
}. That is, we calculate a weighted length of each queue

weighted by
√
ci/λi and choose the queue with the maximal weighted length. We call this policy the

Cost-Arrival Weighted (CAW) policy and we formally define it in Algorithm 1.

In the CAW policy, instead of following the myopic policy to serve the queue with the maximal product

ciQi(t), we weigh each queue with a coefficient
√
ci/λi, which takes the arriving speed of each queue into

consideration and attenuates the effect of the waiting cost coefficient ci. Specifically, this coefficient is smaller

for larger λi, which aligns with our observations that we should sometimes wait for the queues with faster-

arriving speed and serve the slow-arriving queues. This is because by delaying the service for the fast-arriving
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Algorithm 1: Cost-Arrival Weighted (CAW) Policy

input : The arrival rate λi and the waiting cost coefficient ci.

1 for t = 1, 2, . . . do

2 Obtain the current length of each queue Qi(t).

3 Take action aCAW (t) = arg maxi{Qi(t)
√

ci
λi
}. Break ties arbitrarily.

4 end for

queues, we could potentially serve more customers and lower down the overall cost. For the same reason,

the cost coefficient ci also enters the form as
√
ci instead of ci as in the classical cµ-rule.

An advantage of the CAW policy is that it can also be used in the stochastic setting in which the arrival is

random. That is, Algorithm 1 can be used as a policy for the original problem (1). Note that the CAW policy

is very easy to implement in practice. In the next section, we show that it also enjoys superior performance.

Before we close this section, we generalize the CAW policy to the case when the server only has a finite

capacity K, i.e., each time it can only process up to K customers. Such a situation is also quite common

in practice. The generalization is based on a similar idea as discussed in this section. In particular, we also

propose a heuristic policy based on the fluid model that each queue i is served at an equally spanned time

interval hi. Here, because of the capacity constraint, we need to further ensure that λihi ≤ K. Otherwise,

queue i will accumulate infinite customers in the long run. To formalize this idea, instead of solving (5), we

now solve the following optimization problem (6).

min
h1,...,hN

N∑
i=1

Ri(hi),

s.t.

N∑
i=1

1

hi
= 1,

0 ≤ λihi ≤ K, i = 1, 2, . . . , N.

(6)

The following proposition shows that one can solve (6) through a single-direction search.

Proposition 3. Suppose (6) has a feasible solution. Then there exists an optimal solution hoi to (6) satisfying

hoi =


θK√
ciλi

√
ci
λi
≥ θ,

K
λi

√
ci
λi
< θ,

(7)

where θ is the unique solution to

θ =

∑
{i:
√
ci/λi≥θ}

√
ciλi

K −
∑
{i:
√
ci/λi<θ}

λi
.

With Proposition 3, we propose a capacity-constrained CAW policy (C-CAW). The main part of the

policy follows the same idea as in the CAW policy, that is, to serve the queue with the highest value of

ciQi(t)h
o
i among all queues. However, in the capacitated case, when the length of a queue exceeds K, the

7



cost will be higher than that is captured in the objective function of (6). We note that in the fluid model,

the queue length will not exceed K due to the last constraint in (6). However, in the stochastic setting, the

queue length may exceed K at some time period. To address this issue, we further prioritize the queue which

will reach length K at the next service time. Particularly, at each time, we calculate Qi(t) + (hoi − 1)λi for

each queue i. Here, Qi(t) + (hoi − 1)λi represents the expected queue length at the next service. If some of

Qi(t) + (hoi − 1)λi exceed K, then we serve the queue with the maximum value of ci(Qi(t) + (hoi − 1)λi).

Otherwise, we choose the queue with the largest ciQi(t)h
o
i to serve. The detailed algorithm is given in

Algorithm 2.

Algorithm 2: Capacity-Constrained Cost-Arrival Weighted (C-CAW) Policy

input : The arrival rate λi, the waiting cost coefficient ci, and the capacity K.

1 Let hoi , i = 1, 2, . . . , N be the optimal solution to (7).

2 for t = 1, 2, . . . do

3 Obtain the current length of each queue Qi(t).

4 if maxi{Qi(t) + (hoi − 1)λi} ≥ K then

5 Take action aC−CAW (t) = arg maxi{ci(Qi(t) + (hoi − 1)λi)}. Break ties arbitrarily.

6 else

7 Take action aC−CAW (t) = arg maxi{ciQi(t)hoi }. Break ties arbitrarily.

8 end if

9 end for

4. Numerical Experiments

In this section, we validate the performance of the CAW policy. In particular, we compare the performance

of the CAW policy with other policies under both the fluid model and the stochastic model. We show that

the CAW policy performs well in the test cases.

We first consider the deterministic case where we know the customer arrival of each time step. For this

case, we can actually calculate the optimal policy by solving a mixed-integer linear programming (MILP)

problem. Specifically, suppose the number of customers arriving at queue i at time t is Ri,t. We use

ai,t ∈ {0, 1} to represent the action at time t for queue i with ai,t = 1 meaning to serve the i-th queue at

time t. We further use bi,t to capture the waiting time for the Ri,t customers arriving at queue i at time t.
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Then we can write the problem of minimizing the cost of T time periods starting from q0 = 0 as follows:

min
a,b

1

T

N∑
i=1

T−1∑
t=0

cibi,tRi,t,

s.t. bi,t ≥ 1 + t′ − t−
t′∑

k=t+1

(t′ − k + 1)ai,k, 0 ≤ t ≤ t′ ≤ T − 1, 1 ≤ i ≤ N,

N∑
i=1

ai,t = 1, 0 ≤ t ≤ T − 1,

ai,t ∈ {0, 1}.

(8)

Here we take by convention that
∑b
i=a xi = 0 for any a > b. In (8), the objective is calculated as the

summation of the total waiting time for each customer arrival, which is the product of the waiting time periods

bi,t and the number of customers Ri,t. The first constraint is to characterize the time elapsed from t to the

next serving time. In particular, when ai,k = 0 for k = t+1, . . . , t0−1 and ai,t0 = 1, we have for any t ≤ t′ ≤

t0−1, the right hand side of the first constraint is f(t′) := 1+t′−t−
∑t′

k=t+1(t′−k+1)ai,k = 1+t′−t ≤ t0−t.

Moreover, we have f(t0) = t0−t and for any t′ > t0, the expression f(t′) ≤ 1+t′−t−(t′−t0+1)ai,t0 = t0−t′.

Hence, the first constraint would reduce to bi,t ≥ t0− t, which is exactly the number of waiting time periods

for customer Ri,t. The last two constraints in (8) are because of the definition of ai,t. Since we only have a

single server, we must require ai,t to be added up to 1 at each time step.

We first compare the performance of the CAW policy with the optimal solution in the fluid model. We

consider the case with N = 3 queues, each has cost coefficient c1 = c2 = c3 = 1, and the arrival rates are

λ1 = 1, λ2 = w, λ3 = w · v, where w, v = 2, 4, 8 respectively. The initial state is q0 = (0, 0, 0). By taking

Ri,t = λi and T = 100, we solve the MILP problem (8) for the first 100 time periods and consider this result

to be the long-run average cost. In fact, the minimal average cost solved from the optimization problem (8)

converges quickly as the time horizon T increases in these test problems. (We show three cases in Figure 1

to illustrate this. Other cases all have a similar phenomenon.) The numerical results about the comparison

between the CAW policy and the minimal average cost are presented in Table 1. We can see that our CAW

policy can achieve almost optimal results in the deterministic case with the performance gap smaller than

2% under most cases. Specifically, the performance is better when the difference of arrival rates between

each queue is larger, in which case waiting for a fast-arriving queue would be more beneficial.

v = 2 v = 4 v = 8

CAW Optimal Gap CAW Optimal Gap CAW Optimal Gap

w = 2 13.86 13.44 3.13% 19.34 19.34 0.00% 31.29 31.19 0.32%

w = 4 24.40 24.11 1.20% 36.18 35.84 0.95% 58.55 57.90 1.12%

w = 8 44.79 44.06 1.66% 68.26 67.30 1.43% 111.90 110.94 0.87%

Table 1: Long-run average cost of the CAW policy and the optimal policy in the fluid model when the arrival rates

are λ1 = 1, λ2 = w, λ3 = w · v and the cost coefficient c1 = c2 = c3 = 1.
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Figure 1: Optimal average cost of the first T time periods in the fluid model when (w, v) = (2, 2), (4, 2) and (8, 2).

Next we study the stochastic setting. In this setting, we consider the following four policies.

• Myopic Policy: aM (t) ∈ arg maxi{ciQi(t)}, which minimizes the cost at each time step.

• Fixed Scheduling Policy: the cyclic optimal policy of the corresponding fluid model.

• CAW Policy: aCAW (t) ∈ arg maxi{Qi(t)
√

ci
λi
}.

• Hindsight Policy: the ex post optimal policy, which is obtained by solving the corresponding MILP

problem (8) after observing all the customer arrivals.

We first use the same problem setting as in the fluid model. The optimal cyclic policy is obtained by

observing the optimal action sequence of the first 100 steps for the deterministic counterpart of each case.

In fact, the optimal action sequence of the first 100 steps already has a strong cyclic characteristic. For

example, we can observe that the optimal cyclic policies are (1, 3, 2, 3) and (1, 3, 2, 3, 2, 3) for the case when

(w, v) = (2, 2) and (2, 4) respectively. For all the experiments, we set the time horizon T = 100 and repeat 50

times to calculate the average cost and performance gap. The performance of the four policies is presented

in Table 2. Because the hindsight policy serves as a lower bound for our problem, we calculate the gap of

the first three policies with respect to the hindsight policy, and denote the gaps as Gap-M, Gap-F, Gap-C

respectively. As we can see in Table 2, the CAW policy performs the best among the three policies in each

scenario with a maximal gap of 5.38%, while the gap may achieve 25.85% and 11.43% for the myopic and

the fixed scheduling policies respectively.
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w v Myopic Fix CAW Hindsight Gap-M Gap-F Gap-C

2 2 12.55 13.17 12.45 11.81 6.24% 11.43% 5.38%

2 4 19.63 19.13 18.53 17.79 10.32% 7.54% 4.14%

2 8 33.89 31.16 29.85 28.83 17.54% 8.07% 3.54%

4 2 23.85 23.82 22.85 22.04 8.22% 8.10% 3.69%

4 4 38.07 36.07 34.68 33.64 13.18% 7.23% 3.08%

4 8 67.24 57.93 56.83 55.22 21.78% 4.91% 2.91%

8 2 45.50 43.91 42.97 41.72 9.07% 5.26% 2.99%

8 4 74.75 67.53 66.46 64.71 15.53% 4.37% 2.72%

8 8 135.96 112.15 110.41 108.03 25.85% 3.81% 2.20%

Table 2: Comparison of the expected long-run average cost of the myopic policy, the fixed scheduling policy, the CAW

policy and the hindsight policy in the stochastic setting when the arrival rates are λ1 = 1, λ2 = w, λ3 = w · v and the

cost coefficients are c1 = c2 = c3 = 1. The time horizon T is set to be 100. We run 50 instances for each case and

report the average results.

Now we compare the CAW policy to the state-independent optimal policy proposed by Liu and Wang [8].

Specifically, Liu and Wang [8] studied the optimal state-independent policy in the same setting when there are

only two queues. They proved that the optimal policy holds the structure of serving the slow-arriving queue

once followed by serving the fast-arriving queue multiple times. For the experiment, we assume the arrival

rates to be (λ1, λ2) = (1, r), r = 2, 4, 8, 16 for the two queues. We repeat 50 times for each case and report

the average cost of the state-independent policy (S-I), the CAW policy, and the hindsight policy in Table

4. Again, we calculate the gap between the first two policies and the hindsight policy, namely Gap-S and

Gap-C. We can still observe that the CAW policy significantly outperforms the optimal state-independent

policy, as it makes use of the information in current states.

r S-I CAW Hindsight Gap-S Gap-C

2 4.58 3.95 3.84 19.32% 3.08%

4 7.36 6.68 6.48 13.46% 3.02%

8 12.36 11.63 11.32 9.16% 2.76%

16 22.24 21.33 20.82 6.83% 2.49%

Table 3: Comparison of the expected long-run average cost of the optimal state-independent policy, the CAW policy,

and the hindsight policy in the stochastic setting when the arrival rates are λ1 = 1, λ2 = r and the cost coefficients

are c1 = c2 = 1. The time horizon T is set to be 100. We run 50 instances for each case and report the average

results.

Next, we conduct experiments on problems with a larger scale. In particular, we consider the cases with

N = 10, 20, 30 queues, each has cost coefficient ci = 1, and the arrival rate λi follows truncated normal
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distribution of mean 20 and standard deviation σ = 5, 10, 15, i.e., λi = max(0, zi) where zi ∼ N (20, σ2). We

take the time horizon T = 4N for each experiment. Under these scenarios, we compare the performance

of the CAW policy and the myopic policy with respect to the hindsight policy. In Table 4, we report the

average gap of 50 independent experiments. Specifically, the CAW policy performs better than the myopic

policy in all the instances with a maximal gap of 3.12%, while the gap of the myopic policy may achieve

8.44% when σ = 15 and N = 30. Also, we notice that the CAW policy enjoys a larger advantage when the

number of queues gets larger and the arrival rates have larger variation, in which cases the myopic policy

often has poorer performance.

N = 10 N = 20 N = 30

Gap-M Gap-C Gap-M Gap-C Gap-M Gap-C

σ = 5 3.49% 2.37% 3.84% 2.43% 3.83% 2.14%

σ = 10 6.20% 3.12% 6.13% 2.65% 6.73% 2.60%

σ = 15 6.76% 2.93% 6.67% 2.74% 8.44% 2.61%

Table 4: Average efficiency gap of the CAW policy and the myopic policy compared to the hindsight policy. The

number of queues is set to be N = 10, 20, 30 and the arrival rates are λi = max(0, zi), zi ∼ N (20, σ2). The cost

coefficients are ci = 1, i = 1, 2, . . . , N . The time horizon T is taken to be 4N . We run 50 instances for each case and

report the average results.

Finally, we conduct experiments for the finite capacity case. We use the same setting in the second

experiment (Table 2) and we let the server’s capacity K = α
∑3
i=1 λi, where α = 1.3 or 1.6. Specifically, we

consider the myopic policy, the C-CAW policy, and the hindsight policy in this experiment. As the result in

Table 4 shows, the C-CAW policy still outperforms the myopic policy in most cases. Specifically, the average

gap of the C-CAW policy is 5.46%, which is notably smaller compared to the average gap of 12.07% of the

myopic policy. We can also see that the C-CAW policy performs better when the arrival rates have larger

variation and when the capacity is large, which is consistent with the findings from previous experiments.
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α = 1.3 α = 1.6

w v Myopic C-CAW Hind. Gap-M Gap-C Myopic C-CAW Hind. Gap-M Gap-C

2 2 13.46 13.62 12.62 6.65% 7.94% 12.85 12.76 11.99 7.16% 6.44%

2 4 21.09 21.03 19.65 7.36% 7.04% 20.33 19.47 18.54 9.65% 5.01%

2 8 35.89 33.83 32.08 11.86% 5.46% 34.12 31.33 29.77 14.60% 5.22%

4 2 25.75 26.20 24.15 6.64% 8.49% 24.37 23.61 22.53 8.17% 4.80%

4 4 40.05 38.71 36.35 10.17% 6.49% 38.70 35.92 34.49 12.18% 4.12%

4 8 69.84 62.92 60.32 15.78% 4.31% 67.98 59.54 56.80 19.69% 4.81%

8 2 47.93 47.03 43.86 9.27% 7.23% 46.11 43.40 41.92 10.01% 3.55%

8 4 78.32 72.86 69.58 12.57% 4.72% 76.04 68.26 65.79 15.59% 3.75%

8 8 138.69 122.73 118.09 17.45% 3.93% 135.26 115.96 110.42 22.49% 5.02%

Table 5: Comparison of the expected long-run average cost of the myopic policy, the CAW policy and the hindsight

policy in the stochastic setting when the arrival rates are λ1 = 1, λ2 = w, λ3 = w · v and the capacity K = α
∑3

i=1 λi.

The cost coefficients are c1 = c2 = c3 = 1. The time horizon T is set to be 100. We run 50 instances for each case

and report the average results.

5. Conclusion

In this paper, we consider the problem of allocating a single batch server to multiple queues in order to

minimize the long-run average waiting cost. We first formulate the problem as a Markov Decision Process

(MDP) problem. However, it is computationally intractable due to its large state space. To propose a

computationally efficient policy, we analyze the structure of the optimal policy of a corresponding fluid model.

We find out that there exists a cyclic optimal policy that chooses the queue with the maximal product of the

queue length, the waiting cost coefficient, and a “future” service time. Based on this observation, by further

assuming the service interval to be homogeneous, we propose a Cost-Arrival Weighted (CAW) policy, which

weighs the i-th queue length by
√
ci/λi and chooses the longest weighted queue to serve. We also generalize

the CAW policy to the case when the server only has a finite capacity. The efficiency of the CAW policy and

its generalization is tested by extensive numerical experiments. The numerical results show that the CAW

policy enjoys superior performance in both deterministic and stochastic cases. Specifically, the CAW policy

has larger advantage when there are more queues and the arrival rates of each queue have larger variation.
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Appendix

Appendix A. Proof for Proposition 3

We can write the Lagrangian of the optimization problem (6) as

L(hi, µi, τ) =

N∑
i=1

cihiλi +

N∑
i=1

µi(λihi −K) + τ

(
N∑
i=1

1

hi
− 1

)
.

Here, we first ignore the constraint hi ≥ 0, i = 1, 2, . . . , N . As we will show in the following, the solution

obtained will satisfy hi ≥ 0 automatically. Thus, our derivation is valid. Suppose problem (6) has a feasible

solution, we next calculate its optimal solution by investigating its KKT conditions. For the first order

condition, we have
∂L

∂hi
= ciλi −

τ

h2i
+ µiλi = 0, i = 1, 2, . . . , N. (A.1)

For complementary slackness, we have

µi(λihi −K) = 0, i = 1, 2, . . . , N.

Hence, for each queue i, either µi = 0 or λihi − K = 0. For those queue i that satisfies µi = 0, we get

hi =
√

τ
ciλi

by (A.1). It should also satisfy the constraint λihi ≤ K, which renders us
√
τ ≤ K

√
ci/λi. On

the other hand, for those queue i that satisfies λihi −K = 0, i.e., hi = K/λi, we have µiλi = τ/h2i − ciλi
by equation (A.1). Because the KKT condition also requires µi ≥ 0, we can get

√
τ ≥ K

√
ci/λi. Thus, for

a given τ , the optimal solution hi has the following structure:

hi =


√

τ
ciλi

√
τ ≤ K

√
ci
λi
,

K
λi

√
τ > K

√
ci
λi
.

(A.2)

Finally, by plugging the structure (A.2) into the constraint
∑N
i=1

1
hi

= 1, we get

√
τ =

∑
{i:
√
τ≤K
√
ci/λi}

√
ciλi

K −
∑
{i:
√
τ>K
√
ci/λi}

λi
K.

Take θ =
√
τ/K and we would have the desired result in Proposition (3).
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